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Abstract. We have suggested that a humanoid’s quick and stable mov-
ing is going to make a robot soccer team strong. In this paper, we describe
our efforts to acquire a NAO’s gait pattern automatically by using Evo-
lution Strategies. After that we describe a way to improve cognition and
decision for playing soccer. Recognizing correct positions of any objects
on the soccer field allows NAO to make more smart decision and the
smart decision makes NAO more active.

1 Introduction

First of all, we introduce the history of our team “NomoFC” and the origin of
the name. In 2006 and 2007, we took part in RoboCup Soccer Simulation League
3D as the team RoboLog3D , because some people of RoboLog3D affiliated to
Osaka University from Koblenz University. Since 2008, “NomoFC” has taken
part in RoboCup Soccer Simulation League 3D. And the origin of the name of
“Nomo” is from our division name that is “Nonlinear systems, Modeling and
Optimization group”.

Next, we describe our efforts for getting NAO’s gait pattern. We have sug-
gested that a humanoid’s quick and stable moving is going to make a robot
soccer team strong. In this point of view, we are especially focusing on a fast
walking skill with NAO model in these years. The purpose of our study is to
bring a fast and robust locomotion to 3D simulation robot. However it is hard
to realize fast and robust locomotion. So some team has much effort to get their
walking skills since we have to build a motion model and adjust many parame-
ters. In our study, a gait pattern is designed by walking parameters which are
contained in oscillator, controller and trajectory generator. It means that if we
find a suitable parameters for a walking, NAO can acquire a locomotion. There-
fore, we have proposed an automatic parameter tuning method, by introducing
Evolution Strategies(ES) that is one of Evolutionary Computations. Since it is
required that a way to tune the walking parameters effectively and less iteration,
we suggest to approaches. The detail of how to tune the walking parameters by
using Covariance Matrix Adaptation Evolution Strategies is shown in the section
2.



Then, we describe our team’s strategies in order to make our team more
strong and have exciting soccer match. Now our team takes a strategy which
NAO makes decision based on only a location of the ball object and approach it.
It means that NAO ignores the other information about soccer e.g. score, time,
location of the other agents and goals. But it is important that NAO recognizes
correct positions of any objects on the soccer field and makes decision in order to
realize that NAO does not only act more effectively but also makes more smart
decision to cooperate with the other team mates. Therefor we must improve
three parts, cognition, decision and action. From this point of view, we try to
improve cognition and decision in this year. The main idea to improve cognition
and decision is applying the other team’s world models and strategies. Now we
have apply modified Zigorat base world model. However our code does not allow
NAO to know where it is on the field by limited vision perception. So we hope
that a usage of the other world models makes up this disadvantage and allows
NAO to get more multiple information. Then, we focus on that the other teams
strategies which have already build to play soccer not only in Soccer Simulation
3D league but also in Soccer Simulation 2D league. So we also hope that a usage
of the other team’s strategies makes our team strong. The detail of our ideas
about team strategies are shown in the section 3.

2 Tuning Walking parameters by using Evolution

Strategies

We have dealt with a tuning walking parameters problem as a optimization
problem. In this section, we show a walking systems with Central Pattern Gen-
erators (CPGs), then we show methods to tune the walking parameters.

2.1 Walking System

Since soccer robots have to move quickly, it is very important problem to acquire
fast and robust walking skills. We have applied a central pattern generator to our
walking system. A central pattern generator (CPG) is a kind of neural networks
in vertebrates. The CPG generates electric pattern for controlling the movement
of their body, when they mainly flex their muscle in cyclic motion for example
bird’s wing stroke, bipedal walking and so on. Thus human being acquires robust
walking pattern by using generated patterns from the CPG. Moreover the CPG
networks can generate various patterns. It means that the walking system with
the CPG has an ability to achieve many motion i.e. changing the direction, pace
and so on. From these points of view, we have applied walking system with CPG.
In practice, we use a nonlinear oscillator model which is a kind of CPG. In our
study, the structure of bipedal walking of NAO is constructed of thre component,
CPGs, a foot trajectory generator and joint angle controllers. A trajectory gen-
erator designs the joint’s positions based on the output pattern from the CPG.
Then, the controller has the role to control the each joint angle, based on each
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Fig. 1. Phase Oscillators and their connections.

angle generated by trajectory generator. The detail of each component is shown
in the following.

We use the phase oscillator model proposed by Tsuchiya et.al. [1] as a CPG
model. The generated patterns from phase oscillators control gait and roll mo-
tions. The dynamics of phase oscillator is described by

φ̇i(t) = ωi +

3
∑

j(j 6=i)

wij sin (φj(t)− φi(t) + δθij), (1)

and a diagram of this oscillator network is shown in Fig.1. Where, i is a suffix to
indicate the corresponding angle, i.e. i = 1 corresponds to rolling motion, i = 2
and i = 3 correspond to left and right legs, respectively. φi(t) is a phase at time
instant t, ωi and wij are frequencies and connection weights between oscillators,
respectively. The parameters of simplified oscillator networks are as follows.

ω1 = ω2 = ω3, w12 = w21,

w23 = w32, w31 = w13, w12 = w23. (2)

Now, we show a control method for each leg joint for generating the gait
pattern. Let define the ankle positions (xi(t), zi(t)), where the origin is center of
hip joint, for swing phase,

{

xi(t) = αt cos(φi(t))

zi(t) = −H + h sin(φi(t))
(3)

and for support phase,
{

xi(t) = αt cos(φi(t))

zi(t) = −H
(4)

Here, xi(t) and zi(t) represent horizontal and vertical position of ankle re-
spectively. The Fig.2 shows geometric model of humanoid legs, here each joint
is connected by leg parts.

The attitude of the humanoid robot is defined by H and r at t = 0 and
t = 0 means the time when the humanoid robot starts walking in this paper.
The initial conditions of CPG are that

φ1(0) = 0, φ2(0) = π, φ3(0) = 0,

φ̇1(0) = 0, φ̇2(0) = 0, φ̇3(0) = 0. (5)
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Fig. 2. Trajectory of feet and physical parameters

The humanoid robots bend their hip, knee and ankle joints to adjust the hight
of their hip from the ground to H and to adjust the angle of forward tilt to r

with satisfying condition of the following equation,

θhip(t) + θknee(t) + θankle(t) = 0. (6)

By using inverse kinematics, we can derive target angles of hip, knee and an-
kle joints, when the hip and ankle positions are decided under the constrained
condition equation (6).

Where, αt indicates the length of the line trajectory given by the following
equation,

αt = min(αt−1 + St, αmax) (7)

where St represents a increment of step size and α0 means an initial step size.
Then, h indicates the length of short axis of the upper half ellipse. H is the hight
from grand to hip and r is the angle of forward tilt. R(t) represents a roll angle
at time instant t, defined by the following equation

R(t) = rollmax sin(φ1(t))

and the rollmax is the maximum value of roll angle given by a prior in con-
sideration with a specification of the robot structure. Finally using PD control
scheme, the angle of each leg joint (hip, knee and ankle) are controlled to track
the target angle.

Table 1 shows the list of walking parameters and their search ranges. Hear
L1 is the upper leg length and L2 is the lower leg length. In the model of Nao,
L1 is equal to 0.14 and L2 is equal to 0.11. Pgain and Dgain are the proportional
gain and differential gain PD controller. As shown in Table 1 there are twelve
parameters in order to make a good locomotion in some scene.

2.2 Parameter Turning

The problem to acquire a gait pattern by using above structures has twelve
parameters. A set of walking parameters generates a gait pattern which makes



Table 1. The list of walking parameters

parameters name min. max.

ω1(= ω2 = ω3) 2.0 10.0

w12(= w21 = w13 = w31) -1.0 1.0

w23(= w32) -1.0 1.0

αmax 0.0 2
√

(L1 + L2)2 −H2

α0 0.0 αmax

St 0.0 αmax

h 0.0 L1+L2

2

H L1+L2

2
L1 + L2

r 0.0 30.0

rollmax 0.0 10.0

Pgain 0.0 5.0

Dgain -5.0 5.0

the humanoid robot try to walk. However a bad set of walking parameters makes
the robot walk slowly or fall down. So it is required to get a suitable set of walking
parameters easily and quickly for fast walking skills.

Evolutionary Computation is a powerful tool for searching the optimal so-
lution of various optimization and/or parameter tuning problems. A kind of
evolution strategy(ES) [2] can optimize a set of walking parameters by only
evaluating a objective performance such as velocity. In applying a ES, how to
design the fitness function is important, since the fitness function is only measure
the evaluation of objective performance.

Uchitane and Hatanaka defined the fitness function as,

fitness = D − |dl|. (8)

In this study, NAO is standing before we evaluate a walking. Then NAO starts
walking and we evaluate the walking by measuring distance between staring
point to ending point in a short term. Where D is equal to

√

X2
end + Y 2

end from
starting point (0, 0) to ending point (Xend, Yend) where a humanoid robot reaches
without falling down. We define the direction of the front of NAO’s body at
starting point is the positive direction of X–axis and the direction of the left
of NAO’s body is the positive direction of Y–axis. And |dl| is equal to Yend.
This fitness value means that the humanoid robot which is able to walk fast
and straight with a set of parameters in time gets a large value and the set of
parameters which mark the larger fitness value is better.

In following sections we introduce two approaches to get a well set of walk-
ing parameters mask operator applying ES and covariance matrix adaptation
evolution strategy.



2.3 Applying CMA–ES

In this numerical examination, we apply “Shark Library” include CMA-ES solver
and the library is released at Hansen’s homepage. Hansen et al refer the effec-
tiveness of the numbers of µ and λ by applying so called rank − one − update

CMA–ES to many benchmark problems and the setting of µ = λ
4 shows a better

performance [4]. In our problem, the numbers of µ and λ also can affect the
performance of parameter tuning. From this point of view, we set the values of µ
and λ to (µ, λ) = (5, 40), (5, 80), (10, 40), (10, 80), and consider the effectiveness
of the combination of µ and λ. Where “test01 5 40” means the first result under
µ = 5 and λ = 40, and the others means same one.

In the initial generation, we set σ(0) = 0.5. Then we set 0.5 to a initial values
of the average position of parents. It means that 0.5 is the average values of each
searching space [0,1]. Thus, the first population has the parameter values which
is sampled from N (0.5, 0.25).

Fig.3, Fig.5, Fig.7 and Fig.9 are the fitness values – generation charts. Their
horizontal axis shows the number of generation and vertical axis shows the best
value of fitness functin in the generation. Then Fig.4, Fig.6, Fig.8, Fig.10 are
the global stepsize – generation charts. Their horizontal axis shows the number
of generation and vartival axis shows the square value of global step size σ2.

In all runs we can not get a set of parameters with which our walking system
make the humanoid robot be walking fast. However we can get such a set of
parameters in nine runs per twelve runs. In successful runs, we find that the
values of fitness function suddenly and quickly increase and the values reach
about nine regardless of the combination with µ and λ. Then it seems that the
number of generations in which the fitness values starts to rise on µ = 5 is
smaller than on µ = 10.

On the other hand, in frailer runs (test02 5 80,test02 5 40,test02 10 80), the
value of σ on the first and second case decrease as the number of generation goes
but on the other case the value increases. We guess that the searching points
reach to around a local optima and they would be trapped into the local optima
by decreasing the value of σ. and that the searching points spread over the out
range of the searching space by increasing the value of σ.

2.4 Discussion about the Results

In the before section, we show the method to tune the walking parameter and
results. In almost result, the values of the fitness function reach about nine by
applying CMA-ES. It means that the set of the tuned parameters NAO can
walk half length of soccer field in about ten seconds. However a team realizes a
faster walking by which NAO can walk the half length of soccer field(the length
is nine) in about seven seconds. Since our walking performance in velocity is
not enough, our first agenda is to improve the walking system and the tuning
methods. Then, our walking can only go straight ahead. The second agenda is
to find a way to realize curve walking by using our walking systems.



3 Team Strategies

In this section, we discuss how to improve our team’s strategies in this year. In
previous years, we have focused on acquiring a quick and stable bipedal locomo-
tion. And our team has taken a strategy which NAO makes decision based on
only a location of the ball object and approach it. It is not smart strategies for
playing soccer with multi agents. Therefor we will apply a strategies in which
NAO recognizes more information to play soccer e.g. location and velocity of
agents and ball, score, time and so on, then, NAO makes decision and act by
using richer information.

In order to realize such strategies, we will have two improvement our world
model and our strategy for decision making. About the former, we hope that a
usage of the other world models makes up this disadvantage and allows NAO to
get richer information. Now we have apply modified Zigorat base world model.
However in our code agents does not know their global position every time with
limited vision perception. We will apply the world model of libbats. Of course,
we remake a head motion for getting richer information for new world model but
this approach allow us to be able to use the other team’s smart decision which
is build based on libbats world model. We also hope that a usage of the other
team’s strategies makes our team smart. So we focus on that the other teams
have already released smart decision to play soccer not only in Soccer Simulation
3D league but also in Soccer Simulation 2D league. In near future, we will have
robot soccer match 11 vs 11 in Soccer Simulation 3D league. Now it is just time
to cooperate with Soccer Simulation 2D league.

4 Conclusion

In this paper, we describe our team’s history, features and strategies. It is a
big goal to realize having soccer match against members of FIFA world champi-
onship. Therefor we will improve not only our team but also Soccer Simulation
leagues by focusing on the skills which are gotten in the other leagues. At last,
we hope that the robocup activity will help people at the time of disasters such
as a East Japan big earthquake 2011.
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2. T. Bäck, U. Hammel, and H. Schwefel, “Evolutionary Computation: Comments on
the History and Current State,” IEEE Transactions on Evolutionary Computation,
Vol. 1, No. 1, pp. 3–17, 1997.

3. T. Uchitane and T. Hatanaka, “Bipedal locomotion acquisition of humanoid agent
by using evolutionary CPGs,” Preprints of 71 th Annual Conference of Information
Processing Society of Japan, Vol.2, pp.89–90, 2009, (in Japanese).

4. N. Hansen, “The CMA Evolution Strategy: A Tutorial” 2007.



0

1

2

3

4

5

6

7

8

9

10

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101 106 111 116 121 126 131 136

fi
tn

e
s
s

generation

Test01_5_40
Test02_5_40
Test03_5_40

Fig. 3. The values of fitness function with
the best solution in µ = 5 and λ = 40.
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Fig. 4. The values of global step sizes(σ) in
µ = 5 and λ = 40.
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Fig. 5. The values of fitness function with
the best solution in µ = 5 and λ = 80.
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Fig. 6. The values of global step size(σ)
with the best solution in µ = 5 and λ = 80.
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Fig. 7. The values of fitness function with
the best solution in µ = 10 and λ = 40.
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Fig. 8. The values of global step size(σ)
with the best solution in µ = 10 and λ = 40.
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Fig. 9. The values of fitness function with
the best solution in µ = 10 and λ = 80.
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