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Abstract. The main objective of the beeStanbul project is to develop
an efficient software system to correctly model the behaviors of simu-
lated Nao robots in a competitive environment. Several AI algorithms
are being used and developed for contributing to robotics research while
also advancing the quality of competitions in 3D Simulation League. This
team description paper presents important aspects of the overall system
design and outlines the methods used in different modules.

1 Introduction

The beeStanbul project from the Artificial Intelligence and Robotics laboratory
(AIR lab) at Istanbul Technical University (ITU) is the first initiative from ITU
to participate in RoboCup competitions. Earlier projects in the AIR lab were
mainly on cooperative multirobot systems. This challenging project was initiated
in 2009 to apply the experience, gained from earlier research on multirobot
systems [1–3], to competitive environments as well.

The beeStanbul team consists of undergraduate and graduate students from
the Computer Engineering Department of ITU. The main goal of the team is to
contribute for the main objective of the RoboCup project by an efficient design
of a software system which will be successful during the main competition. The
designed software system serves as a basis to apply several high-level intelligence,
reasoning and learning methods.

beeStanbul team participated in the RoboCup 2010 competitions for the
first time and had a change to score several goals during the competitions. The
software architecture of the system has been revised and several promising mo-
tion types have already been developed since 2010. With the completion of the
high-level modules, the team is expected to achieve the project’s main goal.

The organization of the rest of the paper is as follows. Section 2 presents the
software system architecture for simulated Nao robots in the SimSpark simula-
tion environment. Motions and behaviors available for an agent are presented in



Sections 3 and 4 respectively. The developed team-strategy and planning meth-
ods are discussed in Section 5, followed by the conclusion in Section 6.

2 System Architecture

The overall software system consists of several modules that interact with each
other (Fig. 1). The Server Layer perfoms a two-way communication with the
SimSpark server, decodes incoming messages and encodes outgoing messages. In
order to carry out these operations, the SimSpark utilities and rcssnet library,
provided by SimSpark, are used.

Fig. 1. Overall Software Architecture

The Agent Layer is responsible for performing the main functionalities of a
robot. Each agent maintains its own world model for the environment and the
agent model for its own state. The Localization module is responsible for deter-
mining the correct pose of the robot given an observation history. Localization



is performed by using Monte Carlo Localization Algorithm [4]. A short term
memory (in accordance with the observation history) of the robot is maintained
by ten consecutive frames in the world model. The Vision module is responsible
for determining the positions of the observed objects in the environment. Based
on the observation history, a semantic analysis of the objects (including the op-
ponents) and predictions are made. The robot decides on a behavior based on
its agent and world models, the selected team strategy and the assigned role
for itself. The motion command for the corresponding behavior is sent to the
Server Layer to generate the desired effect. Simultaneously, either informative
or query messages might be sent to teammates based on the selected team role.
The planner for the goalie is different than that of the field players.

3 Motions

Robots use seven main body motion types for scoring or keeping a goal. These
include straight walks (e.g., forward and side walk), diagonal walk, inward and
outward turn, rotate, stand-up and kick. The first five motion types basically
use the same approach with an oscillatory behavior while the last two have
different phases during their executions. There are three head motions which
can be executed simultaneously with the body motions. These include track
object, search and reset.

3.1 Motions in Coronal Plane

The Partial Fourier Series (PFS) model is used for motions in coronal plane.
The PFS model is previously developed by [5] for the forward walk motion of
a simulated Nao robot. The PFS model decomposes a bipedal walk periodic
function into a set of oscillators. Each oscillator has four components namely,
offset, amplitude, period and phase delay. The period is common for all the
oscillators to maintain synchronization among all the joints of the robot. The
general formulation is given as follows:

JointV alue = C +A ∗ sin((2 ∗ π ∗ t)/T + φ) (1)

where C is the offset, A is the amplitude, T is the period and φ is the phase
delay. Joint angular velocities are then set to:

∆Joint = (targetAngle− currentAngle) ∗ speed (2)

In order to achieve the desired gait quality, speed and stability for each mo-
tion type, one needs to find the optimal parameter values for each component of
the oscillator. In our work, this has been achieved [6] through applying nature-
inspired algorithms, mainly, Genetic Algorithm and Simulated Annealing. Sim-
ulated Annealing with restarts (SAR), in particular has a better performance in
comparison to the original Simulated Annealing or Genetic Algorithm. There-
fore, the best parameters are obtained by using SAR. These best parameters
produce the desired motion trajectories for each walk motion (Figure 2).



Fig. 2. Two optimized motions in coronal plane: (left) sidewalk, (right) diagonal walk

The objective of the optimization process is to produce the desired motion,
with minimum deviation from the expected trajectory, maximum speed and
stability. Our experiments show that the PFS model can be applied to produce
motion types in coronal plane for a simulated NAO humanoid robot.

All the motion types are then integrated, through a motion transition pro-
cedure which performs the necessary calculations to smoothly switch between
two arbitrary motion types. Also, the motion model provides odometry data
which is then used as a measurement step in localization. Forward kinematics
model has been used to find the location of the foot end-effector with respect to
torso. Mathematical simplicity of the PFS model helps finding the step length
and height. Together with localization methods like Monte Carlo Localization,
odometry provides a reliable source of location information even when there are
no observed landmarks.

3.2 Kick

The kick motion involves four phases, namely, expansion, preparation, execution
and wrap-around. In all these phases, the support leg is shifted outwards in
order to provide space and stability for the action. Some oscillations are then
assigned to each joint of the kicking foot at each phase. In the expansion phase,
the kicking leg moves along the y axis and is raised from the ground. In the
preparation phase, the kicking leg is moved backwards along robot’s x axis. The
purpose is to gather adequate kicking force. In the execution phase, a value is
assigned to each joint angle and the angular velocity is set to its maximum value.
This way, the leg is moved with maximum force and speed towards the ball.
Finally, in the wrap-around phase, after the ball is kicked, the robot puts both
support and kicking legs to their initial positions. Particle Swarm Optimization
[7] method has been employed to optimize the parameters of kick motion and
necessary joint values at each phase. The future work includes a new learning
method for kick motion with a generic alignment approach.



4 Behaviors

There is a layered motion selection architecture for motions, behaviors, plans
and cases in the team strategy. Modularity and ease of maintenance could be
achieved by using such a hierarchy. While motions operate on the lowest level,
behaviors are constucted as sequences of low-level motions. Some behavior ex-
amples include move-to-target, turn-to-target and dribble-to-target. On top of
these behaviors, static plans are constructed in the form of behavior sequences.
The team strategy component uses these plans in a modular way. A sample
instantiation of a plan is given in Figure 3.
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Fig. 3. A sample instantiation of the dribble-to-goal plan.

5 Team Strategy and Planning

Since one of the players is directly assigned to the goalie role, it has its own
strategy as a FSM. The roles of the remaining robots are determined based
on the Case Base Reasoning (CBR) method [8]. In each case, a play-based [9]
high-level behavior selection is performed.

A case represents a world situation, the corresponding role assignment and
the behavior sequences for these roles. Since the environment is distributed in
nature and the available information for a robot is limited with its own view, a
distributed implementation of CBR is developed. Behavior sequences represent
the behaviors of the agents who are represented in the case. Due to noise and
uncertainty in the environment, rather than considering single points of posi-
tions, an abstraction is made for the locations. A limited number of cases are
hand-coded and new cases are derived during a game. Case-based strategy al-
gorithm runs on the robot which has the attacker role. A standing robot that is
closest to ball becomes the attacker.



Two different planning methods will also be developed and integreted into
the CBR framework. One of them uses a Hierarchical Task Network (HTN)
approach [10] and the other models the problem as a DEC-POMDP and solves
it by using dynamic programming approach [11].

6 Conclusion

This team description report outlines different parts of the developed software
system for beeStanbul robots. The beeStanbul is an ongoing project and the
low-level modules of the architecture were designed and implemented. The fu-
ture focus will be on the use of efficient planning and team strategies and the
integration of learning capabilities for robots.
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