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Abstract. We aim at systematically developing a battery of principled
methods to generate behaviours useful to achieve a viable RoboCup 3D
gameplay. behaviours. This is particularly interesting and challenging in
humanoids since any possible tactical, strategical or cooperative aspects
can only be successfully tackled once the basic skills are in place. The
construction of basic skills in humanoids is usually an intricate busi-
ness that requires a large amount of hand-tuning. We aim to develop a
systematic path towards reducing this amount of handtuning both on the
perception as well as the actuation side. We approach this by combining
principled methods, many grounded in information-theory, some in well-
known Kalman- and particle-filtering, as well as hand-coded components.
The long-term goal is to ultimately replace the hand-crafted structuring
of the code by learnt frameworks. This Team Description Paper discusses
the aspects the Bold Hearts team currently concentrates upon.

1 Base and Locomotion

Team Bold Hearts has competed in the RoboCup Soccer Simulation league since
2003. The first two years the team participated in the 2D competitions, in 2005
it joined the 3D community. At the beginning of 2009 a full restart of the team
was initiated, after attracting Sander van Dijk to the team, former member of
the successful team Little Green BATS1. To get the Bold Hearts up to steam
quickly, the new code is based on the libbats library released by the Little Green
BATS2.

A simple open loop oscillator model, based on [4], and similar to that re-
leased by the Little Green BATS, is momentarily used as a gait generator. This
already results in a fast walking behaviour, however the lack of using any sensory
feedback leaves open several possibilities for enhancing stability.

Firstly, we attempt to handle sideways stability. In [4] a method is presented
to couple the phase of the oscillator to the natural phase of the robots dynamics.
The underlying idea is that this natural phase φr can be inferred from the current
location of the Centre Of Pressure (COP), xCOP , and its velocity, ẋCOP :

φr = arctan(
ẋCOP

xCOP
). (1)

1 See http://www.littlegreenbats.nl/
2 See http://www.launchpad.net/littlegreenbats/



This is then combined with the oscillators static rate of change ωc to determine
the rate of change of the phase of the walking gait:

φc = ωc +Kc sin(φr − φc), (2)

where Kc is a coupling constant, which determines the strength of the coupling.
When set to 0, the model reduces to a fully open loop controller.

Initial experiments have shown that the Force Resistance Preceptor used in
the simulation has poor resolution, affecting the usability of the COP measure
and thus the effectiveness of the phase coupling. To overcome this, we study the
effect of different stability measures to replace the COP in (1), most notably
the Zero-Rate of Angular Momentum (ZRAM) point, introduced by [2]. This
measure takes into account additional postural information, resulting in a more
detailed stability indication. Experiments are currently being done to test the
usefulness of the ZRAM-point for phase coupling quantitatively.

Besides lateral stability, another important issue to handle is anterior/posterior
stability. Currently, a basic method is used to lean the torso in the direction of
movement to counteract angular momentum caused by the walking gait:

f = min

(
vy(t)

vmax
+ αay(t), 1

)
(3)

θ(t) = f · θmax, (4)

where vy(t) is the agents desired forward velocity at time t, vmax its maximum
velocity, ay(t) its desired forward acceleration, θ(t) the added torso pitch and
θmax the maximum torso pitch. Efforts are under way to make this method
more adaptive and effective, using reinforcement learning methods and stability
measures like the ZRAM-point.

2 Gait Optimization

The parameters of the walking gait have been optimized with a new optimiza-
tion algorithm called the Alliance Algorithm (AA) [1]. The AA is based on the
metaphoric idea that a certain number of tribes struggle to conquer an environ-
ment, which offers resources to survive. Two features characterize each tribe: the
strength and the resources necessary for its survival. In order to increase their
strength, the tribes may enter into alliances. Also an alliance is characterized by
a strength and an amount of necessary resources, these two values depend on
the features that characterize the tribes inside the alliance. The execution of the
algorithm is based on the formation of alliances. The algorithm will end when
the strongest alliance will be created: it will be able to conquer the environment,
to meet its resource demand and force other alliances out of the environment.
It is possible to perform several iterations of the algorithm starting with tribes
that are influenced by the previous strongest alliance.

In this scenario there are different entities that play a fundamental role:



1. A tribe is a tuple composed of: a point in the solution space, a strength, a
resource demand and an alliance

2. The set of alliances is a mutually disjoint partition of tribes. Each alliance
represents a point in the solution space, defined by the tribes that compose
the alliance

3. The strength of tribe/alliance is the value obtained with the objective func-
tion with the respective solution

4. The amount of resources needed by a tribe/alliance is the value obtained
with the constraint function on the respective solution

The tribes that compose the strongest alliance represent the solution of the
problem.

In experiments performed with this algorithm, the objective function is the
distance traversed by an agent in a fixed amount of time. With the Alliance
Algorithm a solution was found that achieved a walking speed of 0.93 m/s, an
increase of 36% over the gait used by our team in 2010. Also, the algorithm found
such solutions significantly faster than the genetic algorithm that was used and
optimized by our team over the last few years. Full results have been submitted
to the RoboCup 2011 Symposium. Currently work is done to develop new gait
generators that can be optimized further with the AA.

3 Localization and Active Vision Through Infotaxis

One of the challenges introduced in 2009 for the Robocup 3D Simulation teams
were the restrictions placed on the vision sensor. The previous two years the
simulated robots were equipped with perfect 360-degrees omni vision cameras,
making the environment fully accessible. From this year, however, a restricted
vision sensor is introduced, similar to that used in the spheres version of the
simulator until 2006. This sensor has a range of 120 degrees on both the hori-
zontal as the vertical axis and supplies noisy data about the objects within its
field of sight. The next sections describe methods and directions of research we
use to handle this new challenge.

3.1 Localization

We supply the agents with a localization mechanism that maintains their global
location in world coordinates. Many tasks can be achieved with only relative
position information, for instance to kick the ball into a goal the relative position
of the agent to the ball and to the goal is sufficient. Global coordinates however
make it easier for the agent to deduce more about the world, like the trajectory of
the ball and whether the team is in an attack or defence situation. In this section
we will describe the Kalman filter localization method, a traditional method used
to solve prediction problems, as described in [3] and [7].

With this method, the agents estimated location is described by a multi-
variate normal distribution N(x,Σ) with means x, here a 6-dimensional vector



depicting the agents 3D coordinates and velocity, and covariance matrix Σ. After
each time step this estimate is refined in two steps: first a prediction is made
based on the dynamics of the environment and the agents actions, secondly this
prediction is updated by integrating observations.

Predict In the prediction step at timestep k the mean xk|k1 and covariance
matrix Σk|k1 , where (·)k|l means at timestep k, given all observations up to
and including timestep l, are determined as follows:

xk|k1 = Axk1|k1 + Buk1 (5)

Σk|k1 = AΣk1|k1A
T + Q (6)

where A is the state transition model relating the state of the previous
timestep to that of the current timestep, uk is the control vector at timestep
k reflecting the agents actions, and Q is the process noise.

Update The update step uses observations of landmarks at the current timestep,
zk , to refine the estimate:

Kk = Σk|k1H
T(HΣk|k1H

T + Rk)−1 (7)

xk|k = xk|k1 + Kk(zk −Hxk|k1) (8)

Σk|k = (I−KkH)Σk|k1 (9)

where H is the observation model relating an observation to a location world
coordinates and Rk is the observation noise covariance matrix. The matrix
Kk is the gain or blending factor that minimizes the a posteriori error co-
variance. Note that the observation noise model depends on the current
timestep, since the noise when observing far away landmarks is larger than
with nearer objects.

4 Single-Landmark Observations

An observation consists of agent coordinates in the global coordinate system.
These can be obtained through triangulation or trilateration of the observed lo-
cations of several landmarks. However, the gyroscopic sensor of the agent gives
sufficient information to achieve an observation by using only a single landmark.
To achieve this, we maintain the current rotation matrix Tk of the agent rel-
ative to the field. After beaming we set Tk = I. In all subsequent timesteps
we update the matrix using the angular velocity measurement θ̇k , given by the
gyroscopic sensor. Firstly, the previous rotation estimate is used to transform
this measurement from the local to the global coordinate frame:

θ̇′k = Tk−1θ̇k (10)

Based on this a rotation matrix Θk is constructed, describing the rotation
since the last time step in the global coordinate frame. Finally, this matrix is
used to obtain the new global rotation matrix estimate:

Tk = ΘkTk−1 (11)



With this new estimate a local observation can be transformed into a global
location observation, enabling accurate localization based on a single landmark.

4.1 Information Gathering

During a match an agent that focusses solely on the ball will receive sufficient
observations of landmarks to be able to localize effectively using the method
described in the previous section. However, there are more interesting objects
in the field. Especially with the current increase in team size, coordination and
keeping track of the opponents players becomes an important issue, hindered
by the fact that an agent can only pay attention to a small part of the field at
the same time. Therefore we search for active vision strategies which optimize
the amount of useful information gathered by the agent. To do this we will use
the infotaxis strategy which locally maximizes the expected rate of information
gain[6]. The information gain resulting from an observation can be measured
by the decrease of the entropy H(f) of the distribution f(x). In our case of
multivariate normal distribution we have:

f(x) =
1

(2π)N/2|Σ|1/2
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(12)

H(f) =

∫ ∞
−∞

f(x) log f(x)dx (13)

= log

(√
(2πe)N |Σ|

)
, (14)

where N is the number of dimensions, in our case N = 6. The problem we need
to solve is which action a ∈ A of the possible actions A to take to maximize the
decrease in entropy:

ak = arg max
a

E[∆H(f)|a] (15)

= arg min
a

E[H(f)k+1H(f)k|a] (16)

= arg min
a

E[H(f)k+1|a] (17)

= arg min
a

E[log
(√

(2πe)N |Σk+1|k+1|
)
|a] (18)

= arg min
a

E[|Σk+1|k+1||a] (19)

= arg min
a

E[Rk+1|a|a], (20)

where E[X|y] denotes the expected value of X given y. This basically means
that the agent should take the action that results in an observation with the
highest accuracy, which can be estimated with the believe of current state state.



4.2 Ongoing Research

There are several ways to continue from here and multiple problems we are or
will be researching. Firstly, the choice of set of actions A is important to get the
best results. If for instance it consists of turn head n degrees left/right the agent
may focus on a single set of landmarks, unwilling to sweep over empty areas,
even though that may lead to observing better landmarks. Secondly, the current
model of infotaxis assumes that all information is equally valueble. However, in
football this is not the case; information about the location of the ball may be
worth more than where your keeper is. More- over, the relative value of different
types of information could change during a game. A tradeoff has to be made to
decide on which target to focus, e.g. by limiting A to actions that will not loose
sight of the ball or by alternating be- tween the targets based on the current
value of the information about each to the agent. To optimize the latter case
we will use another information theoret- ical principle, relevant information,
which measures the amount of information present in a random variable that
is relevant for an agents optimal strategy [5]. This amount gives an indication
which variable should get more attention.

5 Team Coordination

With growing team sizes, the importance of the coordination of the agents’
positions increases. Due to it’s simplicity we have opted for a centralised system
with the keeper responsible for coordinating the remainder of the team.

Initially, each agent is assigned a position according to his uniform number.
As the game evolves, agents may drift from their assigned position when exe-
cuting certain tasks, such as attacking the opponents goal. Our system allows
the keeper to reassign each agent so that it assumes the position closest to it.
This allows agent to swap positions dynamically in response to changing game
developments, closing gaps in the formation that would have otherwise been left
open until the departed agent returns.

Further work is planned to explore other models of coordination, such as
distributed systems, and to develop responsiveness to game situations (e.g. win-
ning/losing, corner-kicks).
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